Solveeit Logo

Question

Physics Question on Moment Of Inertia

Two rings of radius RR and nRnR made of same material have the ratio of moment of inertia about an axis passing through center is 1:81 : 8. The value of nn is

A

22

B

222 \sqrt{2}

C

44

D

1/21/2

Answer

22

Explanation

Solution

I1I2=(M1M2)(R1R2)2\frac{I_{1}}{I_{2}}=\left(\frac{M_{1}}{M_{2}}\right)\left(\frac{R_{1}}{R_{2}}\right)^{2}
=(λl1λl2)(R1R2)2=\left(\frac{\lambda l_{1}}{\lambda l_{2}}\right)\left(\frac{R_{1}}{R_{2}}\right)^{2}
=(λl1λl2)(R1R2)=(2πR2πnR)(RnR)2=\left(\frac{\lambda l_{1}}{\lambda l_{2}}\right)\left(\frac{R_{1}}{R_{2}}\right)=\left(\frac{2 \pi R}{2 \pi n R}\right)\left(\frac{R}{n R}\right)^{2}
(λ=(\lambda= linear densityof wire == constant ))
I1I2=In3=18\Rightarrow \frac{I_{1}}{I_{2}}=\frac{I}{n_{3}}=\frac{1}{8} (given ))
n3=8\therefore n^{3}=8
n=2\Rightarrow n=2