Solveeit Logo

Question

Physics Question on Moment Of Inertia

Two rings of radius RR and nRn R made of same material have the ratio of moment of inertia about an axis passing through centre in 1:81: 8. The value of nn is

A

22

B

2ˉ \bar{2}

C

44

D

12\frac{1}{2}

Answer

22

Explanation

Solution

Ratio of moment of inertia of the rings
I1I2=(M1M2)(R1R2)2=(λL1λL2)2(R1R2)2\frac{ I _{1}}{ I _{2}}=\left(\frac{ M _{1}}{ M _{2}}\right)\left(\frac{ R _{1}}{ R _{2}}\right)^{2}=\left(\frac{\lambda L _{1}}{\lambda L _{2}}\right)^{2}\left(\frac{ R _{1}}{ R _{2}}\right)^{2}
=(2πR2πnR)(RnR)2=\left(\frac{2 \pi R }{2 \pi n R }\right)\left(\frac{ R }{ nR }\right)^{2}
[λ=[\lambda= linear density of wire == constant ]
L1L2+1n3+18\Rightarrow \frac{ L _{1}}{ L _{2}}+\frac{1}{ n _{3}}+\frac{1}{8} (given)
n3=8\therefore n ^{3}=8
n=2\Rightarrow n =2