Solveeit Logo

Question

Question: Two resistors of resistances \(R_{1} = (100 \pm 3)\Omega\)and \(R_{2} = (200 \pm 4)\Omega\)are conne...

Two resistors of resistances R1=(100±3)ΩR_{1} = (100 \pm 3)\Omegaand R2=(200±4)ΩR_{2} = (200 \pm 4)\Omegaare connected in parallel. The equivalent resistance of the parallel combination is

A

(66.7±1.8)Ω(66.7 \pm 1.8)\Omega

B

(66.7±4.0)Ω(66.7 \pm 4.0)\Omega

C

(66.7±3.0)Ω(66.7 \pm 3.0)\Omega

D

(66.7±7.0)Ω(66.7 \pm 7.0)\Omega

Answer

(66.7±1.8)Ω(66.7 \pm 1.8)\Omega

Explanation

Solution

Here , R1=(100±3)ΩR_{1} = (100 \pm 3)\Omega

R2=(200±4)ΩR_{2} = (200 \pm 4)\Omega

The equivalent resistance in parallel combinations is

1Rp=1R1+1R2\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}}

1Rp=1100+1200=3200\frac{1}{R_{p}} = \frac{1}{100} + \frac{1}{200} = \frac{3}{200}

Rp=2003=66.7ΩR_{p} = \frac{200}{3} = 66.7\Omega

The error in equivalent resistance is given by

ΔRPRP2=ΔR1R12+ΔR2R22ΔRp=ΔR1(RPR1)2+ΔR2(RpR2)2=3(66.7100)2+4(66.7200)=1.8Ω\frac{\Delta R_{P}}{R_{P}^{2}} = \frac{\Delta R_{1}}{R_{1}^{2}} + \frac{\Delta R_{2}}{R_{2}^{2}}\Delta R_{p} = \Delta R_{1}\left( \frac{R_{P}}{R_{1}} \right)^{2} + \Delta R_{2}\left( \frac{R_{p}}{R_{2}} \right)^{2} = 3\left( \frac{66.7}{100} \right)^{2} + 4\left( \frac{66.7}{200} \right) = 1.8\Omega

Hence , the equivalent resistances along with parallel combination is (66.7±1.8Ω66.7 \pm 1.8\Omega)