Solveeit Logo

Question

Question: Two resistors of resistances \({R_1} = 100 \pm 3\;{\rm{ohm}}\) and \({R_2} = 200 \pm 4\;{\rm{ohm}}\)...

Two resistors of resistances R1=100±3  ohm{R_1} = 100 \pm 3\;{\rm{ohm}} and R2=200±4  ohm{R_2} = 200 \pm 4\;{\rm{ohm}} are connected (a) in series (b) in parallel. Find the equivalent resistance of the (a) series combination, (b) parallel combination. Use for
(a) the relation R=R1+R2R = {R_1} + {R_2} and for
(b) 1R=1R1+1R2\dfrac{1}{{R'}} = \dfrac{1}{{{R_{\kern 1pt} }_1}} + \dfrac{1}{{{R_2}}} and ΔRR2=ΔR1R12+ΔR2R22\dfrac{{\Delta R'}}{{R{'^2}}} = \dfrac{{\Delta {R_1}}}{{R_1^2}} + \dfrac{{\Delta {R_2}}}{{R_2^2}}.

Explanation

Solution

First, identify the true values and the errors in the given resistances. Then, substitute the values in the equations given in the question to obtain the values of unknown quantities. The final resistance will contain the true value term and the error term.

Complete step by step answer:
The resistance of the first resistor, R1=100±3  Ω{R_1} = 100 \pm 3\;\Omega .
The resistance of the second resistor, R2=200±4  Ω{R_2} = 200 \pm 4\;\Omega .

(a)
The equivalent resistance of the series combination is given by,
R=R1+R2R = {R_1} + {R_2}
Now, we will substitute the values of R1{R_1} and R2{R_2} in the above equation to find the equivalent resistance.
R=(100±3  Ω)+(200±4  Ω) =(100+200)±(3+4)  Ω =300±7  Ω R = \left( {100 \pm 3\;\Omega } \right) + \left( {200 \pm 4\;\Omega } \right)\\\ = \left( {100 + 200} \right) \pm \left( {3 + 4} \right)\;\Omega \\\ = 300 \pm 7\;\Omega
Therefore, the equivalent resistance of the series combination is 300±7  Ω300 \pm 7\;\Omega .

(b)
The expression to find the equivalent resistance of the parallel combination without error limit is given by,
1R=1R1+1R2\dfrac{1}{{R'}} = \dfrac{1}{{{R_{\kern 1pt} }_1}} + \dfrac{1}{{{R_2}}}
Here, RR' is the equivalent resistance of the parallel combination without error limit.
We will rewrite the above equation as,
R=R1R2R1+R2R' = \dfrac{{{R_1}{R_2}}}{{{R_1} + {R_2}}}
The above equation will give the equivalent resistance without the error limits. Hence, we will use only the true values of the resistances in the equation.
Substituting 100  Ω100\;\Omega for R1{R_1} and 200  Ω200\;\Omega forR2{R_2}in the above equation, we get
R=100  Ω×200  Ω100  Ω+200  Ω =20000  Ω300Ω 66.7  Ω R' = \dfrac{{100\;\Omega \times 200\;\Omega }}{{100\;\Omega + 200\;\Omega }}\\\ = \dfrac{{20000\;\Omega }}{{300\,\Omega }}\\\ \cong 66.7\;\Omega
The relation to find the error in the equivalent resistance of the parallel combination is given in the question as,
ΔRR2=ΔR1R12+ΔR2R22\dfrac{{\Delta R'}}{{R{'^2}}} = \dfrac{{\Delta {R_1}}}{{R_1^2}} + \dfrac{{\Delta {R_2}}}{{R_2^2}}
Here, ΔR\Delta R' is the error in RR', ΔR1\Delta {R_1} is the error in R1{R_1} and ΔR2\Delta {R_2} is the error in R2{R_2}.
The value with the ±\pm symbol in front of it in the resistance value is the error in the resistance.
Hence, we substitute 3  Ω3\;\Omega for ΔR1\Delta {R_1}, 4  Ω4\;\Omega for ΔR2\Delta {R_2}, 100  Ω100\;\Omega for R1{R_1} and 200  Ω200\;\Omega forR2{R_2} and 66.7  Ω66.7\;\Omega for RR' in the above equation to find the error in RR'.
ΔRR2=ΔR1R12+ΔR2R22 ΔR(66.7  Ω)2=3  Ω(100  Ω)2+4  Ω(200  Ω)2 ΔR=3  Ω(66.7  Ω  100)2+4  Ω(66.7  Ω200)2 1.8  Ω \dfrac{{\Delta R'}}{{R{'^2}}} = \dfrac{{\Delta {R_1}}}{{R_1^2}} + \dfrac{{\Delta {R_2}}}{{R_2^2}}\\\ \dfrac{{\Delta R'}}{{{{\left( {66.7\;\Omega } \right)}^2}}} = \dfrac{{3\;\Omega }}{{{{\left( {100\;\Omega } \right)}^2}}} + \dfrac{{4\;\Omega }}{{{{\left( {200\;\Omega } \right)}^2}}}\\\ \Delta R' = 3\;\Omega {\left( {\dfrac{{66.7\;\Omega \;}}{{100}}} \right)^2} + 4\;\Omega {\left( {\dfrac{{66.7\;\Omega }}{{200}}} \right)^2}\\\ \cong 1.8\;\Omega
Hence, we write the equivalent resistance with the error limit as
R±ΔR=66.7+1.8  ΩR' \pm \Delta R' = 66.7 + 1.8\;\Omega
Therefore, the value of the equivalent resistance of the parallel combination is 66.7+1.8  Ω66.7 + 1.8\;\Omega .

Note:
It should be noted that the errors and the true values of the resistances should be added separately to find the resistance of the series combination. All the operations such as addition, subtraction, multiplication and addition should be done separately for true values and the errors in any measurements.