Solveeit Logo

Question

Question: Two resistances \({R_1} = \left( {16 \pm 0.3} \right)\Omega \) and \({R_2} = \left( {48 \pm 0.5} \ri...

Two resistances R1=(16±0.3)Ω{R_1} = \left( {16 \pm 0.3} \right)\Omega and R2=(48±0.5)Ω{R_2} = \left( {48 \pm 0.5} \right)\Omega are connected in parallel. Find the max %\% error.
(A) 3.2%3.2\%
(B) 1.6%1.6\%
(C) 0.8%0.8\%
(D) 2%2\%

Explanation

Solution

To solve this question we first evaluate the equivalent resistance and using that equivalent resistance we will evaluate the total equivalent error. Hence after that using the maximum error formula and the obtained values, we will evaluate the maximum percentage error of the resistance provided in the question.
Formula used:
Equivalent resistance for parallel connection
1Req=1R1+1R2+....\Rightarrow \dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + ....
The formula for parallel equivalence error
ΔReq=ΔR1(ReqR12)+ΔR2(ReqR22)\Rightarrow \Delta {R_{eq}} = \Delta {R_1}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_1}^2}}} \right) + \Delta {R_2}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_2}^2}}} \right)
Percentage error formula
%error=ΔReqReq×100\Rightarrow \% error = \dfrac{{\Delta {R_{eq}}}}{{{R_{eq}}}} \times 100

Complete Step-by-step solution
Here given that the resistance R1{R_1} and R2{R_2} are connected in parallel in a circuit. The value of the resistance is given with error including as R1=(16±0.3)Ω{R_1} = \left( {16 \pm 0.3} \right)\Omega and R2=(48±0.5)Ω{R_2} = \left( {48 \pm 0.5} \right)\Omega are connected in parallel. Hence for the parallel connection of resistance, the formula for equivalent resistance can be given as
1Req=1R1+1R2\Rightarrow \dfrac{1}{{{R_{eq}}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}
Req=R1×R2R1+R2\Rightarrow {R_{eq}} = \dfrac{{{R_1} \times {R_2}}}{{{R_1} + {R_2}}}
Substituting the values of R1=16Ω{R_1} = 16\Omega and R2=48Ω{R_2} = 48\Omega , hence
Req=16×4816+48Ω\Rightarrow {R_{eq}} = \dfrac{{16 \times 48}}{{16 + 48}}\Omega
Req=12Ω\therefore {R_{eq}} = 12\Omega
Now we will evaluate the error for the parallel connections, which can be given by ΔReq\Delta {R_{eq}}. The maximum percentage error can be obtained by carrying out the percentage of relative error.
ΔReq=ΔR1(ReqR12)+ΔR2(ReqR22)\Rightarrow \Delta {R_{eq}} = \Delta {R_1}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_1}^2}}} \right) + \Delta {R_2}\left( {\dfrac{{{\operatorname{R} _{eq}}}}{{{R_2}^2}}} \right)
Here substituting the values of ΔR1=0.3\Delta {R_1} = 0.3, ΔR2=0.5\Delta {R_2} = 0.5 and the values of resistance R1=16Ω{R_1} = 16\Omega and R2=48Ω{R_2} = 48\Omega , hence
ΔReq=(0.3)(12122)+(0.5)(12482)\Rightarrow \Delta {R_{eq}} = \left( {0.3} \right)\left( {\dfrac{{12}}{{{{12}^2}}}} \right) + \left( {0.5} \right)\left( {\dfrac{{12}}{{{{48}^2}}}} \right)
ΔReq=0.16875+0.03125\Rightarrow \Delta {R_{eq}} = 0.16875 + 0.03125
ΔReq0.20Ω\therefore \Delta {R_{eq}} \approx 0.20\Omega
Now using the maximum percentage error formula we will evaluate the max %\% error,
%error=ΔReqReq×100\Rightarrow \% error = \dfrac{{\Delta {R_{eq}}}}{{{R_{eq}}}} \times 100
Substituting the values of Req=12Ω{R_{eq}} = 12\Omega and ΔReq0.20Ω\Delta {R_{eq}} \approx 0.20\Omega , in the equation results in
%error=0.2012×100\Rightarrow \% error = \dfrac{{0.20}}{{12}} \times 100
%error=1.6%\therefore \% error = 1.6\%
Hence resistances R1=(16±0.3)Ω{R_1} = \left( {16 \pm 0.3} \right)\Omega and R2=(48±0.5)Ω{R_2} = \left( {48 \pm 0.5} \right)\Omega are connected in parallel then the max %\% error of the combination of the resistance is given as 1.6%1.6\% .

Therefore the option (B) is the correct answer.

Note: Here we have used the concept of percentage error where the maximum percentage error can be obtained by carrying out the percentage of relative error, where the relative error can be defined as the ratio of absolute error and the measured error.