Solveeit Logo

Question

Physics Question on Sound Wave

Two resistances of 100Ω and 200Ω are connected in series with a battery of 4V and negligible internal resistance. A voltmeter is used to measure voltage across the 100Ω resistance, which gives a reading of 1V. The resistance of the voltmeter must be _____ Ω.

Answer

The voltmeter RvR_v is connected in parallel with the 200Ω\Omega resistor. The equivalent resistance of this parallel combination is:

Rparallel=Rv200Rv+200.R_{\text{parallel}} = \frac{R_v \cdot 200}{R_v + 200}.

The total resistance of the circuit is:

Rtotal=100+Rparallel.R_{\text{total}} = 100 + R_{\text{parallel}}.

Using the voltage division rule, the voltage across the 100Ω\Omega resistor is given as:

V100=100RtotalVtotal.V_{100} = \frac{100}{R_{\text{total}}} \cdot V_{\text{total}}.

Substitute the given values:

43=100100+Rv200Rv+2004.\frac{4}{3} = \frac{100}{100 + \frac{R_v \cdot 200}{R_v + 200}} \cdot 4.

Simplify by dividing through by 4:

13=100100+Rv200Rv+200.\frac{1}{3} = \frac{100}{100 + \frac{R_v \cdot 200}{R_v + 200}}.

Take the reciprocal:

3=100+Rv200Rv+200100.3 = \frac{100 + \frac{R_v \cdot 200}{R_v + 200}}{100}.

Multiply through by 100:

300=100+Rv200Rv+200.300 = 100 + \frac{R_v \cdot 200}{R_v + 200}.

Rearrange:

200=Rv200Rv+200.200 = \frac{R_v \cdot 200}{R_v + 200}.

Simplify by cross-multiplying:

200(Rv+200)=Rv200.200(R_v + 200) = R_v \cdot 200.

Expand terms:

200Rv+40000=Rv200.200R_v + 40000 = R_v \cdot 200.

Cancel 200Rv200R_v on both sides:

40000=200Rv.40000 = 200R_v.

Solve for RvR_v:

Rv=200Ω.R_v = 200\Omega.

Final Answer: The resistance of the voltmeter is:

200 Ω\Omega.