Solveeit Logo

Question

Question: Two resistances connected in parallel give the resultant value of 2 ohms, when connected in series t...

Two resistances connected in parallel give the resultant value of 2 ohms, when connected in series the value becomes 9 ohms. Calculate the value of each resistance.

Explanation

Solution

The resistance of the wire opposes the flow of electrons, so is the flow of current. The voltage drop across the resistors remains the same in the parallel combination of the resistors. The current through each resistor remains the same in the series combination of the resistors.

Complete step by step answer:
Given: The resultant resistance of parallel combination is Rp=2  Ω{R_p} = 2\;\Omega , the resultant resistance of series combination is Rs=9  Ω{R_s} = 9\;\Omega .
Use the expression of the resultant resistance of parallel combination to find the resultant value of the resistance. The expression is given as,
Rp=R1R2R1+R2......(1){R_p} = \dfrac{{{R_1} \cdot {R_2}}}{{{R_1} + {R_2}}}......\left( 1 \right)
Here, R1{R_1} and R2{R_2} are the value of each resistance.
Use the expression of the resultant resistance of series combination to find the resultant value of the resistance. The expression is given as,
Rs=R1+R2......(2){R_s} = {R_1} + {R_2}......\left( 2 \right)
Substitute Rs{R_s} for R1+R2{R_1} + {R_2} in the equation (1).
Rp=R1R2Rs......(3){R_p} = \dfrac{{{R_1} \cdot {R_2}}}{{{R_s}}}......\left( 3 \right)
Substitute 9  Ω9\;\Omega for Rs{R_s} and 2  Ω2\;\Omega for Rp{R_p} in the equation (3).
2  Ω=R1R29  Ω\Rightarrow 2\;\Omega = \dfrac{{{R_1} \cdot {R_2}}}{{9\;\Omega }}
On simplification,
R1=18  Ω2R2........(4)\Rightarrow {R_1} = \dfrac{{18\;{\Omega ^2}}}{{{R_2}}}........\left( 4 \right)
Substitute 18  ΩR2\dfrac{{18\;\Omega }}{{{R_2}}} for R1{R_1} and 9  Ω9\;\Omega for Rs{R_s}in the equation (2).
9  Ω=18  ΩR2+R2\Rightarrow 9\;\Omega = \dfrac{{18\;\Omega }}{{{R_2}}} + {R_2}
R229R2+18  Ω=0\Rightarrow R_2^2 - 9{R_2} + 18\;\Omega = 0
On simplification,
(R23  Ω)(R26  Ω)=0\Rightarrow \left( {{R_2} - 3\;\Omega } \right)\left( {{R_2} - 6\;\Omega } \right) = 0
R2=3  Ω,6  Ω\Rightarrow {R_2} = 3\;\Omega ,6\;\Omega
Substitute 3  Ω3\;\Omega for R2{R_2} in the equation (4) to find R1{R_1}.
R1=18  Ω23  Ω\Rightarrow {R_1} = \dfrac{{18\;{\Omega ^2}}}{{3\;\Omega }}
On simplification,
R1=6  Ω\Rightarrow {R_1} = 6\;\Omega
Substitute 6  Ω6\;\Omega for R2{R_2} in the equation (4) to find R1{R_1}.
R1=18  Ω26  Ω\Rightarrow {R_1} = \dfrac{{18\;{\Omega ^2}}}{{6\;\Omega }}
On simplification,
R1=3  Ω\Rightarrow {R_1} = 3\;\Omega

Therefore, the value of each resistance is 6Ω,3  Ω6\,\Omega ,3\;\Omega or 3Ω,6  Ω3\,\Omega ,6\;\Omega .

Note:
- The resistance depends on the length and area of the wire. The parallel combination of electrical devices is used for domestic wiring.
- Use the expression for parallel combination and series combination carefully and remember always that the voltage drops across each resistance in parallel combination and current through each resistance in series combination remain the same.