Solveeit Logo

Question

Question: two resistances are measured in ohm give as r1 is equal to 3 ohm + - 1% and r2 is equal to 6 minus 2...

two resistances are measured in ohm give as r1 is equal to 3 ohm + - 1% and r2 is equal to 6 minus 2% when they are connected in parallel the percentage errors and equivalent resisistance

Answer

4/3%

Explanation

Solution

The equivalent resistance RpR_p of two resistances R1R_1 and R2R_2 connected in parallel is given by:

1Rp=1R1+1R2\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} Rp=R1R2R1+R2R_p = \frac{R_1 R_2}{R_1 + R_2}

The nominal values are R1=3ΩR_1 = 3 \, \Omega and R2=6ΩR_2 = 6 \, \Omega. The nominal equivalent resistance is:

Rp=3×63+6=189=2ΩR_p = \frac{3 \times 6}{3 + 6} = \frac{18}{9} = 2 \, \Omega

The percentage errors are given as 1%1\% for R1R_1 and 2%2\% for R2R_2. The absolute error in R1R_1 is ΔR1=1% of R1=0.01×3=0.03Ω\Delta R_1 = 1\% \text{ of } R_1 = 0.01 \times 3 = 0.03 \, \Omega. The absolute error in R2R_2 is ΔR2=2% of R2=0.02×6=0.12Ω\Delta R_2 = 2\% \text{ of } R_2 = 0.02 \times 6 = 0.12 \, \Omega.

To find the error in the equivalent resistance RpR_p, we can use the formula for error propagation for parallel resistances, derived from 1Rp=1R1+1R2\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}. Differentiating and considering maximum error:

ΔRpRp2=ΔR1R12+ΔR2R22\frac{|\Delta R_p|}{R_p^2} = \frac{|\Delta R_1|}{R_1^2} + \frac{|\Delta R_2|}{R_2^2}

We want to find the percentage error in RpR_p, which is ΔRpRp×100\frac{|\Delta R_p|}{R_p} \times 100. From the error formula, we can write:

ΔRpRp=Rp(ΔR1R12+ΔR2R22)\frac{|\Delta R_p|}{R_p} = R_p \left( \frac{|\Delta R_1|}{R_1^2} + \frac{|\Delta R_2|}{R_2^2} \right)

Substitute the nominal values and absolute errors:

ΔRpRp=2(0.0332+0.1262)\frac{|\Delta R_p|}{R_p} = 2 \left( \frac{0.03}{3^2} + \frac{0.12}{6^2} \right) ΔRpRp=2(0.039+0.1236)\frac{|\Delta R_p|}{R_p} = 2 \left( \frac{0.03}{9} + \frac{0.12}{36} \right) ΔRpRp=2(0.013+0.039)\frac{|\Delta R_p|}{R_p} = 2 \left( \frac{0.01}{3} + \frac{0.03}{9} \right) ΔRpRp=2(0.013+0.013)\frac{|\Delta R_p|}{R_p} = 2 \left( \frac{0.01}{3} + \frac{0.01}{3} \right) ΔRpRp=2(0.023)=0.043\frac{|\Delta R_p|}{R_p} = 2 \left( \frac{0.02}{3} \right) = \frac{0.04}{3}

The percentage error in RpR_p is:

Percentage error =ΔRpRp×100=0.043×100=43% = \frac{|\Delta R_p|}{R_p} \times 100 = \frac{0.04}{3} \times 100 = \frac{4}{3} \%

Alternatively, we can use the formula for absolute error in parallel combination derived from partial derivatives:

ΔRp=R22ΔR1+R12ΔR2(R1+R2)2\Delta R_p = \frac{R_2^2 \Delta R_1 + R_1^2 \Delta R_2}{(R_1 + R_2)^2} ΔRp=62(0.03)+32(0.12)(3+6)2=36×0.03+9×0.1292\Delta R_p = \frac{6^2 (0.03) + 3^2 (0.12)}{(3 + 6)^2} = \frac{36 \times 0.03 + 9 \times 0.12}{9^2} ΔRp=1.08+1.0881=2.1681\Delta R_p = \frac{1.08 + 1.08}{81} = \frac{2.16}{81}

Now calculate the percentage error:

Percentage error =ΔRpRp×100=2.16/812×100 = \frac{\Delta R_p}{R_p} \times 100 = \frac{2.16/81}{2} \times 100

Percentage error =2.1681×2×100=2.16162×100 = \frac{2.16}{81 \times 2} \times 100 = \frac{2.16}{162} \times 100

Percentage error =216162%=36×627×6%=3627%=4×93×9%=43% = \frac{216}{162} \% = \frac{36 \times 6}{27 \times 6} \% = \frac{36}{27} \% = \frac{4 \times 9}{3 \times 9} \% = \frac{4}{3} \%

Both methods give the same result.