Solveeit Logo

Question

Question: Two resistance *R*<sub>1</sub> and *R*<sub>2</sub> provides series to parallel equivalents as \(\fra...

Two resistance R1 and R2 provides series to parallel equivalents as n1\frac{n}{1} then the correct relationship is

A

(R1R2)2+(R2R1)2=n2\left( \frac{R_{1}}{R_{2}} \right)^{2} + \left( \frac{R_{2}}{R_{1}} \right)^{2} = n^{2}

B

(R1R2)3/2+(R2R1)3/2=n3/2\left( \frac{R_{1}}{R_{2}} \right)^{3/2} + \left( \frac{R_{2}}{R_{1}} \right)^{3/2} = n^{3/2}

C

(R1R2)+(R2R1)=n\left( \frac{R_{1}}{R_{2}} \right) + \left( \frac{R_{2}}{R_{1}} \right) = n

D

(R1R2)1/2+(R2R1)1/2=n1/2\left( \frac{R_{1}}{R_{2}} \right)^{1/2} + \left( \frac{R_{2}}{R_{1}} \right)^{1/2} = n^{1/2}

Answer

(R1R2)1/2+(R2R1)1/2=n1/2\left( \frac{R_{1}}{R_{2}} \right)^{1/2} + \left( \frac{R_{2}}{R_{1}} \right)^{1/2} = n^{1/2}

Explanation

Solution

Series resistance RS=R1+R2R_{S} = R_{1} + R_{2} and parallel resistance RP=R1R2R1+R2R_{P} = \frac{R_{1}R_{2}}{R_{1} + R_{2}}RSRP=(R1+R2)2R1R2=n\frac{R_{S}}{R_{P}} = \frac{(R_{1} + R_{2})^{2}}{R_{1}R_{2}} = n

R1+R2R1R2=n\frac{R_{1} + R_{2}}{\sqrt{R_{1}R_{2}}} = \sqrt{n}

R12R1R2+R22R1R2=n\frac{\sqrt{R_{1}^{2}}}{\sqrt{R_{1}R_{2}}} + \frac{\sqrt{R_{2}^{2}}}{\sqrt{R_{1}R_{2}}} = \sqrt{n}

R1R2+R2R1=n\sqrt{\frac{R_{1}}{R_{2}}} + \sqrt{\frac{R_{2}}{R_{1}}} = \sqrt{n}