Solveeit Logo

Question

Physics Question on deccay rate

Two radioactive substances AA and BB have decay constants 5λ5\lambda and λ\lambda respectively. At t=0t = 0, they have the same number of nuclei. The ratio of number of nuclei of AA to those of BB will be (1/e)2(1/e)^{2} after a time interval

A

4λ4\, \lambda

B

2λ2\, \lambda

C

1/2λ1/2\,\lambda

D

1/4λ1/4\,\lambda

Answer

1/2λ1/2\,\lambda

Explanation

Solution

Given : λA=5λ,λB=λ\lambda_{A}=5\lambda, \lambda_{B}=\lambda At t=0,(N0)A=(N0)Bt=0, \left(N_{0}\right)_{A}=\left(N_{0}\right)_{B} At time t,NANB=(1e)2t, \frac{N_{A}}{N_{B}}=\left(\frac{1}{e}\right)^{2} According to radioactive decay, NN0=eλt\frac{N}{N_{0}}=e^{-\lambda t} NA(N0)A=eλAt\therefore \frac{N_{A}}{\left(N_{0}\right)_{A}}=e^{-\lambda_{A^t}} and NB(N0)B=eλBt\frac{N_{B}}{\left(N_{0}\right)_{B}}=e^{-\lambda_{B^t}} Divide (i)\left(i\right) by (ii)\left(ii\right), we get NANB=e(λAλB)t\frac{N_{A}}{N_{B}}=e^{-\left(\lambda_{A}-\lambda_{B}\right)t} or NANB=e(5λλ)t\frac{N_{A}}{N_{B}}=e^{-\left(5\lambda-\lambda\right)t} or (1e)2=e4λt\left(\frac{1}{e}\right)^{2}=e^{-4\lambda t} or (1e)2=(1e)4λt\left(\frac{1}{e}\right)^{2}=\left(\frac{1}{e}\right)^{4\lambda t} 4λt=2\Rightarrow 4\lambda t=2 or t=24λ=12λt=\frac{2}{4\lambda}=\frac{1}{2\lambda}