Solveeit Logo

Question

Physics Question on Nuclei

Two radioactive substances AA and BB have decay constants 5 λ\lambda, and λ\lambda respectively. At t=0t\, =\, 0, they have the same number of nuclei. The ratio of number of nuclei of AA to those of BB will be (1/e2)(1/e^2) after a time

A

4λ\lambda

B

2λ\lambda

C

12λ\frac{1}{2\lambda}

D

14λ\frac{1}{4\lambda}

Answer

12λ\frac{1}{2\lambda}

Explanation

Solution

At t=0,N=N0t = 0, N = N_0 for both the substances AA and BB NA=N0eλAt\therefore N_{A}=N_{0}e^{-\lambda A^t} and NB=N0eλBtN_{B}=N_{0}e^{-\lambda B^t} NANB=eλAteλBt=e(λBλA)t=e(λ5λ)t\frac{N_{A}}{N_{B}}=\frac{e^{-\lambda}A^{t}}{e^{-\lambda}B^{t}}=e^{\left(\lambda_{B}-\lambda_{A}\right)t}=e^{\left(\lambda-5\lambda\right)t} e4λt=(1e)4λte^{-4\lambda t}=\left(\frac{1}{e}\right)^{4\lambda t} As NANB=(1e÷)2\frac{N_{A}}{N_{B}}=\left(\frac{1}{e}\div\right)^{2} [According to question] 4λt=2\therefore 4\lambda t=2 or t=24λ=12λt=\frac{2}{4\lambda}=\frac{1}{2\lambda}