Solveeit Logo

Question

Physics Question on Nuclei

Two radioactive substances AA and BB have decay constants 5λ5\, \lambda and λ\lambda respectively. At t=0t=0 they have the same number of nuclei. The ratio of number of nuclei of AA to those of BB will be (1e)2\left(\frac{1}{e}\right)^{2} after a time interval

A

14λ\frac{1}{4\lambda }

B

4λ4\lambda

C

2λ2\lambda

D

12λ\frac{1}{2\lambda }

Answer

12λ\frac{1}{2\lambda }

Explanation

Solution

Number of nuclei remained after time tt can be written as
N=N0eλtN=N_{0} e^{-\lambda t}
where N0N_{0} is initial number of nuclei of both the substances.
N1=N0e5λtN_{1}=N_{0} e^{-5 \lambda t} ...(i)
N2=N0eλtN_{2}=N_{0} e^{-\lambda t} ...(ii)
Dividing E (i) by E (ii), we obtain
N1N2=e(5λ+λ)t=e4λt=1e4λt\frac{N_{1}}{N_{2}}=e^{(-5 \lambda+\lambda) t}=e^{-4 \lambda t}=\frac{1}{e^{4 \lambda t}}
But, we have given
N1N2=(1e)2=1e2\frac{N_{1}}{N_{2}}=\left(\frac{1}{e}\right)^{2}=\frac{1}{e^{2}}
Hence, 1e2=1e4λt\frac{1}{e^{2}}=\frac{1}{e^{4 \lambda t}}
Comparing the powers, we get
2=4λt2=4 \lambda t
or t=24λ=12λt=\frac{2}{4 \lambda}=\frac{1}{2 \lambda}