Solveeit Logo

Question

Question: Two radioactive nuclei A and B are taken with their disintegration constant \(\lambda_{A}\) and \(\l...

Two radioactive nuclei A and B are taken with their disintegration constant λA\lambda_{A} and λB\lambda_{B} and initially NAN_{A} and NBN_{B}number of nuclei are taken then the time after which their un disintegrated nuclei are same is

A

λAλB(λAλB)\frac{\lambda_{A}\lambda B}{\left( \lambda_{A} - \lambda_{B} \right)} in (NBNA)\left( \frac{N_{B}}{N_{A}} \right)

B

1(λA+λB)in(NBNA)\frac{1}{\left( \lambda_{A} + \lambda_{B} \right)}in\left( \frac{N_{B}}{N_{A}} \right)

C

1(λBλA)in(NBNA)\frac{1}{\left( \lambda_{B} - \lambda_{A} \right)}in\left( \frac{N_{B}}{N_{A}} \right)

D

1(λAλB)in(NBNA)\frac{1}{\left( \lambda_{A} - \lambda_{B} \right)}in\left( \frac{N_{B}}{N_{A}} \right)

Answer

1(λBλA)in(NBNA)\frac{1}{\left( \lambda_{B} - \lambda_{A} \right)}in\left( \frac{N_{B}}{N_{A}} \right)

Explanation

Solution

: NAeλAt=NBeλBtN_{A}e^{- \lambda}A^{t} = N_{B}{e^{- \lambda}}_{B^{t}}

Or e(λBλA)t=(NB/NA)e^{(\lambda_{B} - \lambda_{A})t} = (N_{B}/N_{A})

t=1(λBλA)ln(NBNA)\therefore t = \frac{1}{(\lambda_{B} - \lambda_{A})}\ln\left( \frac{N_{B}}{N_{A}} \right)