Solveeit Logo

Question

Physics Question on deccay rate

Two radioactive nuclei AA and BB are taken with their disintegration constant λA\lambda_{A} and λB\lambda_{B} and initially NAN_{A} and NBN_{B} number of nuclei are taken then the time after which their undisintegrated nuclei are same is

A

λAλB(λAλB)\frac{\lambda_{A}\lambda_{B}}{\left(\lambda_{A}-\lambda_{B}\right)} ln (NBNA)\left(\frac{N_{B}}{N_{A}}\right)

B

1(λA+λB)\frac{1}{\left(\lambda_{A}+\lambda_{B}\right)} ln (NBNA)\left(\frac{N_{B}}{N_{A}}\right)

C

1(λBλA)\frac{1}{\left(\lambda_{B}-\lambda_{A}\right)} ln (NBNA)\left(\frac{N_{B}}{N_{A}}\right)

D

1(λAλB)\frac{1}{\left(\lambda_{A}-\lambda_{B}\right)} ln (NBNA)\left(\frac{N_{B}}{N_{A}}\right)

Answer

1(λBλA)\frac{1}{\left(\lambda_{B}-\lambda_{A}\right)} ln (NBNA)\left(\frac{N_{B}}{N_{A}}\right)

Explanation

Solution

NAeλAt=NBeλBtN_{A} e^{-\lambda_{A^t}}=N_{B^{e^{-\lambda_{B^t}}}} or e(λBλA)t=(NBNA)e^{\left(\lambda_{B}-\lambda_{A}\right)t}=\left(N_{B} N_{A}\right) t=1(λBλA)\therefore t=\frac{1}{\left(\lambda_{B}-\lambda_{A}\right)} ln (NBNA) \left(\frac{N_{B}}{N_{A}}\right)