Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

Two positive charges of magnitude q'q' are placed at the ends of a side (side 1) of a square of side 2a'2a'. Two negative charges of the same magnitude are kept at the other corners. Starting from rest, if a charge QQ moves from the middle of side 11 to the centre of square, its kinetic energy at the centre of square is :

A

zero

B

14πε02qQa(1+15)\frac{1}{4\pi\varepsilon_{0}} \frac{2qQ}{a}\left(1+\frac{1}{\sqrt{5}}\right)

C

14πε02qQa(125)\frac{1}{4\pi\varepsilon_{0}} \frac{2qQ}{a}\left(1-\frac{2}{\sqrt{5}}\right)

D

14πε02qQa(115)\frac{1}{4\pi\varepsilon_{0}} \frac{2qQ}{a}\left(1-\frac{1}{\sqrt{5}}\right)

Answer

14πε02qQa(115)\frac{1}{4\pi\varepsilon_{0}} \frac{2qQ}{a}\left(1-\frac{1}{\sqrt{5}}\right)

Explanation

Solution

Potential at point A, VA=2kqa2kaa5V_{A} = \frac{2kq}{a}- \frac{2ka}{a\sqrt{5}} Potential at point B, VB=0V_{B} = 0 \therefore\quad Using work energy theroem WAB)electric=Q(VAVB)W_{AB )\,electric} = Q\left(V_{A} - V_{B}\right) =2KqQa[115]=(14πε0)2Qqa[115]=\quad \frac{2KqQ}{a}\left[1-\frac{1}{\sqrt{5}}\right]\quad\quad=\quad\left( \frac{1}{4\pi\varepsilon_{0}}\right) \frac{2Qq}{a}\left[1-\frac{1}{\sqrt{5}}\right]