Solveeit Logo

Question

Physics Question on Electric Dipole

Two points masses, mm each carrying charges q-q and +q+q are attached to the ends of a mass less rigid non-conducting wire of length L'L'. When this arrangement is placed in a uniform electric field, then it deflects through an angle ii. The minimum time needed by rod to align itself along the field is

A

2πmLqE2 \pi \sqrt{\frac{mL}{qE}}

B

π2mL2qE \frac{\pi}{2} \sqrt{\frac{mL}{2 qE}}

C

π2mLqE \pi \sqrt{\frac{2 mL}{qE}}

D

2π3mLqE2 \pi \sqrt{\frac{3 mL}{qE}}

Answer

π2mL2qE \frac{\pi}{2} \sqrt{\frac{mL}{2 qE}}

Explanation

Solution

Torque when the wire is brought in a uniform field EE.
τ=qELsinθ\tau=q E L \sin \theta
=qELθ[θ=q E L \theta[\because \theta is very small ]]
Moment of inertia of rod AB about OO
I=m(L2)2+m(L2)2=mL22I=m\left(\frac{L}{2}\right)^{2}+m\left(\frac{L}{2}\right)^{2}=\frac{m L^{2}}{2}
As τ=Iα\tau=I \alpha.

So α=τI=qELθmL22\alpha=\frac{\tau}{I}=\frac{q E L \theta}{\frac{m L^{2}}{2}}
ω2θ=2qELθmL2[θ=ω2θ]\Rightarrow \omega^{2} \theta=\frac{2 q E L \theta}{m L^{2}}\left[\because \theta=\omega^{2} \theta\right]
ω2=2qEmL\Rightarrow \omega^{2}=\frac{2 q E}{m L}
The time period of the wire is
T=2πω=2πmL2qET=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m L}{2 q E}}
The rod will become parallel to the field in time T4\frac{T}{4}
So t=T4=π2mL2qEt=\frac{T}{4}=\frac{\pi}{2} \sqrt{\frac{m L}{2 q E}}