Solveeit Logo

Question

Question: Two points A and B have coordinates (1, 0) and (–1, 0) respectively and Q is a point which satisfie...

Two points A and B have coordinates (1, 0) and

(–1, 0) respectively and Q is a point which satisfies the

relation AQBQ=±1.AQ - BQ = \pm 1. The locus of Q is.

A

12x2+4y2=312x^{2} + 4y^{2} = 3

B

12x24y2=312x^{2} - 4y^{2} = 3

C

12x24y2+3=012x^{2} - 4y^{2} + 3 = 0

D

12x2+4y2+3=012x^{2} + 4y^{2} + 3 = 0

Answer

12x24y2=312x^{2} - 4y^{2} = 3

Explanation

Solution

According to the given condition

(x1)2+y2(x+1)2+y2=±1\sqrt { ( x - 1 ) ^ { 2 } + y ^ { 2 } } - \sqrt { ( x + 1 ) ^ { 2 } + y ^ { 2 } } = \pm 1

On squaring both sides, we get

2x2+2y2+1=2(x1)2+y2(x+1)2+y22 x ^ { 2 } + 2 y ^ { 2 } + 1 = 2 \sqrt { ( x - 1 ) ^ { 2 } + y ^ { 2 } } \cdot \sqrt { ( x + 1 ) ^ { 2 } + y ^ { 2 } }

Again on squaring, we get

12x24y2=312 x ^ { 2 } - 4 y ^ { 2 } = 3.