Solveeit Logo

Question

Question: Two point masses A and B having masses in the ratio 4 : 3 are separated by a distance of 1 m. When a...

Two point masses A and B having masses in the ratio 4 : 3 are separated by a distance of 1 m. When another point mass C of mass M is placed in between A and B, the force between A and C is (13)rd\left( \frac { 1 } { 3 } \right) ^ { \mathrm { rd } } of the force between B and C. Then the distance of C from A is

A

23 m\frac { 2 } { 3 } \mathrm {~m}

B

C

14 m\frac { 1 } { 4 } \mathrm {~m}

D

27 m\frac { 2 } { 7 } \mathrm {~m}

Answer

23 m\frac { 2 } { 3 } \mathrm {~m}

Explanation

Solution

Let a point mass C is placed at a distance of x m form the point mass A as shown in the figure.

Here, MAMB=43\frac { M _ { A } } { M _ { B } } = \frac { 4 } { 3 }

Force between A and C is

FAC=GMMAx2\mathrm { F } _ { \mathrm { AC } } = \frac { \mathrm { GMM } _ { \mathrm { A } } } { \mathrm { x } ^ { 2 } } …..(i)

Force between B and C is

FBC=GMMB(1x)2\mathrm { F } _ { \mathrm { BC } } = \frac { \mathrm { GMM } _ { \mathrm { B } } } { ( 1 - \mathrm { x } ) ^ { 2 } } …. (ii)

According to given problem

FAC=13 FBC\mathrm { F } _ { \mathrm { AC } } = \frac { 1 } { 3 } \mathrm {~F} _ { \mathrm { BC } }

GMAMx2=13(GMBM(1x)2)\therefore \frac { \mathrm { GM } _ { \mathrm { A } } \mathrm { M } } { \mathrm { x } ^ { 2 } } = \frac { 1 } { 3 } \left( \frac { \mathrm { GM } _ { \mathrm { B } } \mathrm { M } } { ( 1 - \mathrm { x } ) ^ { 2 } } \right) (Using (i) and (ii))

43=MB3(1x)2\frac { 4 } { 3 } = \frac { M _ { B } } { 3 ( 1 - x ) ^ { 2 } } or 4=x2(1x)24 = \frac { x ^ { 2 } } { ( 1 - x ) ^ { 2 } }

Or 2=x1x2 = \frac { x } { 1 - x } or 2 -2x = 0

3x = 2 or x=23 m\mathrm { x } = \frac { 2 } { 3 } \mathrm {~m}