Solveeit Logo

Question

Question: Two point light sources are 24 *cm* apart. Where should a convex lens of focal length 9 *cm* be put ...

Two point light sources are 24 cm apart. Where should a convex lens of focal length 9 cm be put in between them from one source so that the images of both the sources are formed at the same place

A

6 cm

B

9 cm

C

12 cm

D

15 cm

Answer

6 cm

Explanation

Solution

The given condition will be satisfied only if one source (S1) placed on one side such that u < f (i.e. it lies under the focus). The other source (S2) is placed on the other side of the lens such that u > f (i.e. it lies beyond the focus).

If S1S _ { 1 } is the object for lens then 1f=1y1x\frac { 1 } { f } = \frac { 1 } { - y } - \frac { 1 } { - x }

\Rightarrow 1y=1x1f\frac { 1 } { y } = \frac { 1 } { x } - \frac { 1 } { f } ........(i)

If S2S _ { 2 }is the object for lens then 1f=1+y1(24x)\frac { 1 } { f } = \frac { 1 } { + y } - \frac { 1 } { - ( 24 - x ) }

1y=1f1(24x)\frac { 1 } { y } = \frac { 1 } { f } - \frac { 1 } { ( 24 - x ) } ........(ii)

From equation (i) and (ii)

1x1f=1f1(24x)\frac { 1 } { x } - \frac { 1 } { f } = \frac { 1 } { f } - \frac { 1 } { ( 24 - x ) } \Rightarrow 1x+1(24x)=2f=29\frac { 1 } { x } + \frac { 1 } { ( 24 - x ) } = \frac { 2 } { f } = \frac { 2 } { 9 }

\Rightarrow x224x+108=0x ^ { 2 } - 24 x + 108 = 0

On solving the equation x=18 cmx = 18 \mathrm {~cm} , 6 cm