Solveeit Logo

Question

Question: Two point charges q and – q are at positions (0, 0, d) and (0, 0, – d) respectively. What is the ele...

Two point charges q and – q are at positions (0, 0, d) and (0, 0, – d) respectively. What is the electric field at (a, 0, 0)?

A

2qd4πε0( d2+a2)3/2\frac { 2 \mathrm { qd } } { 4 \pi \varepsilon _ { 0 } \left( \mathrm {~d} ^ { 2 } + \mathrm { a } ^ { 2 } \right) ^ { 3 / 2 } } k^\widehat{k}

B

qd4πε0( d2+a2)3/2\frac { \mathrm { qd } } { 4 \pi \varepsilon _ { 0 } \left( \mathrm {~d} ^ { 2 } + \mathrm { a } ^ { 2 } \right) ^ { 3 / 2 } } k^\widehat{k}

C

2qd4πε0( d2+a2)3/2\frac { - 2 \mathrm { qd } } { 4 \pi \varepsilon _ { 0 } \left( \mathrm {~d} ^ { 2 } + \mathrm { a } ^ { 2 } \right) ^ { 3 / 2 } } k^\widehat{k}

D

qd4πε0( d2+a2)3/2\frac { - \mathrm { qd } } { 4 \pi \varepsilon _ { 0 } \left( \mathrm {~d} ^ { 2 } + \mathrm { a } ^ { 2 } \right) ^ { 3 / 2 } } k^\widehat{k}

Answer

\frac { - 2 \mathrm { qd } } { 4 \pi \varepsilon _ { 0 } \left( \mathrm {~d} ^ { 2 } + \mathrm { a } ^ { 2 } \right) ^ { 3 / 2 } }$$\widehat{k}

Explanation

Solution

Use formula E =

\ E = 14πε0\frac { 1 } { 4 \pi \varepsilon _ { 0 } } q×2 d(a2+d2)3/2\frac { \mathrm { q } \times 2 \mathrm {~d} } { \left( \mathrm { a } ^ { 2 } + \mathrm { d } ^ { 2 } \right) ^ { 3 / 2 } }

\ E\overrightarrow { \mathrm { E } } = 14πε0\frac { 1 } { 4 \pi \varepsilon _ { 0 } } (–)