Solveeit Logo

Question

Question: Two point charges q and –q are at positions (0, 0, d) and (0, 0, –d) respectively. What is the elect...

Two point charges q and –q are at positions (0, 0, d) and (0, 0, –d) respectively. What is the electric field at (a, 0, 0) ?

A

2qd4πε0(d2+a2)3/2k^\frac{2qd}{4\pi\varepsilon_{0}(d^{2} + a^{2})^{3/2}}\widehat{k}

B

qd4πε0(d2+a2)3/2k^\frac{qd}{4\pi\varepsilon_{0}(d^{2} + a^{2})^{3/2}}\widehat{k}

C

2qd4πε0(d2+a2)3/2k^\frac{- 2qd}{4\pi\varepsilon_{0}(d^{2} + a^{2})^{3/2}}\widehat{k}

D

qd4πε0(d2+a2)3/2k^\frac{- qd}{4\pi\varepsilon_{0}(d^{2} + a^{2})^{3/2}}\widehat{k}

Answer

2qd4πε0(d2+a2)3/2k^\frac{- 2qd}{4\pi\varepsilon_{0}(d^{2} + a^{2})^{3/2}}\widehat{k}

Explanation

Solution

r = (a2 + d2)1/2 at angle 180 – 2 q

Enet = 2EA cos 12\frac { 1 } { 2 } (180 – 2q) = 2EAcos(90 – q)

= 2EA sinq = 2kqr2\frac { 2 \mathrm { kq } } { \mathrm { r } ^ { 2 } } d(r)\frac { \mathrm { d } } { ( \mathrm { r } ) }

= 2kqd(a2+d2)3/2\frac { 2 \mathrm { kqd } } { \left( \mathrm { a } ^ { 2 } + \mathrm { d } ^ { 2 } \right) ^ { 3 / 2 } } in –z direction.