Solveeit Logo

Question

Physics Question on Electric Field

Two point charges q1(10μC)q_1( \sqrt{10} \mu C) and q2(25  μC)q_2(-25 \; \mu C) are placed on the x-axis at x=1mx = 1 m and x=4mx = 4 m respectively. The electric field (in V/m) at a point y=3my = 3 m on y-axis is, [take14πε0=9×109Nm2C2]\left[\text{take} \frac{1}{4\pi\varepsilon_{0}} = 9\times10^{9} Nm^{2} C^{-2}\right]

A

(63i^+27j^)×102( - 63 \hat{i} + 27 \hat{j} ) \times 10^2

B

(81i^81j^)×102( 8 1\hat{i} - 81 \hat{j} ) \times 10^2

C

(63i^27j^)×102( 63 \hat{i} - 27 \hat{j} ) \times 10^2

D

(81i^+81j^)×102( - 81 \hat{i} + 81 \hat{j} ) \times 10^2

Answer

(63i^27j^)×102( 63 \hat{i} - 27 \hat{j} ) \times 10^2

Explanation

Solution

Let E1\vec{E}_1 & E2\vec{E}_2 are the vaues of electric field due to q1q_1 & q2q_2 respectively magnitude of E2=14π0q2r2E_2 = \frac{1}{4 \pi \in_0} \frac{q_2}{r^2}
E2=9×109×(25)×106(42+32)V/mE_{2} = \frac{9\times10^{9} \times\left(25\right) \times10^{-6}}{\left(4^{2} +3^{2}\right)} V/m
E2=9×103V/mE_{2} = 9 \times10^{3} V/m
E2=9×103(cosθ2i^sinθ2j^)\therefore \vec{E}_{2} = 9 \times10^{3} \left(\cos\theta_{2} \hat{i } -\sin\theta_{2} \hat{j}\right)
tanθ2=34\because \tan \theta_{2} = \frac{3}{4}
E2=9×103(45i^35j^)=(72i^54j^)×102\therefore \vec{E}_{2} = 9 \times10^{3} \left(\frac{4}{5} \hat{i} - \frac{3}{5} \hat{j}\right) = \left(72 \hat{i} -54\hat{j}\right) \times10^{2}
E1=14π010×106(12+32)E_{1} = \frac{1}{4\pi\in_{0}} \frac{\sqrt{10} \times10^{-6}}{\left(1^{2} + 3^{2}\right)}
=(9×109)×10×107=\left(9 \times10^{9}\right) \times\sqrt{10} \times10^{-7}
=910×102= 9 \sqrt{10} \times10^{2}
E1=910×102[cosθ1(i^)+sinθ1j^]\therefore \vec{E}_{1} = 9 \sqrt{10} \times10^{2} \left[\cos\theta_{1} \left(-\hat{i}\right) + \sin \theta_{1} \hat{j}\right]
tanθ1=3\therefore \tan\theta_{1}= 3
E1=9×10×102[110(i^)+310j^]E_{1} =9 \times\sqrt{10} \times10^{2} \left[\frac{1}{\sqrt{10} } \left(-\hat{i}\right) + \frac{3}{\sqrt{10}} \hat{j}\right]
E1=9×102[i^+3j^]=[9i^+27j^]102E_{1} = 9\times10^{2} \left[-\hat{i} +3\hat{j}\right] = \left[-9 \hat{i} + 27\hat{j}\right] 10^{2}
E=E1+E2=(63i^27j^)×102V/m\therefore \vec{E} = \vec{E}_{1} + \vec{E}_{2} = \left(63 \hat{i} - 27 \hat{j}\right) \times10^{2} V/m