Solveeit Logo

Question

Physics Question on Spherical Mirrors

Two plano-concave lenses (1(1 and 2)2) of glass of refractive index 1.51.5 have radii of curvature 25cm25 \,cm and 20cm20 \,cm. They are placed in contact with their curved surface towards each other and the space between them is filled with liquid of refractive index 4/34/3. Then the combination is

A

convex lens of focal length 70 cm

B

concave lens of focal length 70 cm

C

concave lens of focal length 66.6 cm

D

convex lens of focal length 66.6 cm

Answer

concave lens of focal length 66.6 cm

Explanation

Solution

1f1=(321)(1125)=150\frac{1}{f_{1}}=\left(\frac{3}{2}-1\right)\left(\frac{1}{\infty}-\frac{1}{25}\right)=-\frac{1}{50}
1f2=(431)(125+120)=3100\frac{1}{f_{2}}=\left(\frac{4}{3}-1\right)\left(\frac{1}{25}+\frac{1}{20}\right)=\frac{3}{100}
and 1f3=(321)(1201)=140\frac{1}{f_{3}}=\left(\frac{3}{2}-1\right)\left(\frac{1}{-20}-\frac{1}{\infty}\right)=-\frac{1}{40}
Now 1f=1f1+1f2+1f3 \frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}}
=150+3100140=-\frac{1}{50}+\frac{3}{100}-\frac{1}{40}
f=66.6cm\therefore f=-66.6 cm