Solveeit Logo

Question

Physics Question on Gravitation

Two planets A and B having masses m1m_1 and m2m_2 move around the sun in circular orbits of r1r_1 and r2r_2 radii, respectively. If the angular momentum of A is LL and that of B is 3L3L, the ratio of time periods TATB\frac{T_A}{T_B} is:

A

(r2r1)32\left(\frac{r_2}{r_1}\right)^{\frac{3}{2}}

B

(r1r2)3\left(\frac{r_1}{r_2}\right)^3

C

127(m2m1)3\frac{1}{27} \left(\frac{m_2}{m_1}\right)^3

D

27(m1m2)327 \left(\frac{m_1}{m_2}\right)^3

Answer

127(m2m1)3\frac{1}{27} \left(\frac{m_2}{m_1}\right)^3

Explanation

Solution

Solution: For a circular orbit:

πr2Lm.\pi r^2 \propto \frac{L}{m}.

For planet A:
πr12TAL2m1.\pi r_1^2 \cdot T_A \propto \frac{L}{2m_1}.

For planet B:
πr22TB3L2m2.\pi r_2^2 \cdot T_B \propto \frac{3L}{2m_2}.

Taking the ratio of time periods:
TATB=m2m1(r1r2)2.\frac{T_A}{T_B} = \frac{m_2}{m_1} \cdot \left(\frac{r_1}{r_2}\right)^2.

Squaring both sides:
(TATB)2=m22m12(r1r2)4.\left(\frac{T_A}{T_B}\right)^2 = \frac{m_2^2}{m_1^2} \cdot \left(\frac{r_1}{r_2}\right)^4.

Taking the cube root:
TATB=127(m2m1)3.\frac{T_A}{T_B} = \frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3.

Final Answer: 127(m2m1)3\frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3.