Solveeit Logo

Question

Physics Question on Newtons law of gravitation

Two planets AA and BB have the same material density. If the radius of AA is twice that of BB, then the ratio of the escape velocity VA/VBV_{A} / V_{B} is

A

22

B

2\sqrt {2}

C

1/21 / \sqrt {2}

D

1/21/2

Answer

22

Explanation

Solution

Let the density be dd for both the planets.
Given that RA=2RBR _{ A }=2 R _{ B }
Now, mass of A,MA=4dπRA33=32dπRB33A, M_{A}=\frac{4 d \pi R_{A}{ }^{3}}{3}=\frac{32 d \pi R_{B}{ }^{3}}{3}
similarly, MB=4dπRB33M _{ B }=\frac{4 d \pi R _{ B }{ }^{3}}{3}
Escape velocity for a planet is given by
V=2GMRV =\sqrt{\frac{2 GM }{ R }}
So, VA=2GMA3RA=64GdπRB36RBV_{A}=\sqrt{\frac{2 GM _{A}}{3 R_{A}}}=\sqrt{\frac{64 Gd \pi R_{B}^{3}}{6 R_{B}}}
=32GdπRB23=\sqrt{\frac{32 Gd \pi R_{B}^{2}}{3}}
Similarly, VB=8GdπRB23V _{ B }=\sqrt{\frac{8 Gd \pi R _{ B }^{2}}{3}}
Taking the ratio, VAVB=32GdπRB23×38GdπRB2\frac{ V _{ A }}{ V _{ B }}=\sqrt{\frac{32 Gd \pi R _{ B }^{2}}{3}} \times \sqrt{\frac{3}{8 Gd \pi R _{ B }{ }^{2}}}
=2=2