Solveeit Logo

Question

Mathematics Question on Angle between Two Planes

Two planes a1x+b1y+c1z+d1=0a_1x + b_1y + c_1z + d_1 = 0 and a2x+b2y+c2z+d2=0a_2x + b_2y + c_2z + d_2 = 0 are parallel if :

A

a1a2=b1b2=c1c2\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}

B

a1a2b1b2=c1c2\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}

C

a1a2b1b2c1c2\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}

D

a1a2=b1b2c1c2\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}

Answer

a1a2=b1b2=c1c2\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}

Explanation

Solution

We know that two planes a1x+b1y+c1z+d1=0a_1 x + b_1 y + c_1 z + d_1 = 0 and a2x+b2y+c2z+d2=0a_2x + b_2y + c_2z + d_2 = 0 are parallel if a1a2=b1b2=c1c2.\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} .