Solveeit Logo

Question

Physics Question on Electric charges and fields

Two pith balls, each of mass 1.8 g are suspended from the same point by silk threads each of length 20 cm. When equal charge QQ is given to both the balls, they separate until the two threads become perpendicular. Then the charge QQ on each pith ball is [14πε0=9×109Nm2C2]\left[\frac{1}{4\pi \varepsilon_0 }=9 \times10^{9} N m^{2} C^{-2}\right]

A

3×107C3 \times10^{-7} C

B

4×107C4 \times10^{-7} C

C

5×107C5 \times10^{-7} C

D

2×107C 2 \times10^{-7} C

Answer

4×107C4 \times10^{-7} C

Explanation

Solution

Given, mass of ball m=1.8g=1.8×103kgm = {1.8 \,g = 1.8 \times 10^{-3} \, kg}
Length of pendulum l=20cm=20×102ml = {20 \, cm = 20 \times 10^{-2} \, m}

From figure, at equilibrium
Fx=TsinθFe=0\sum F_x = T \sin \theta - F_e =0 ...(i)
Fy=Tcosθ=mg=0\sum F_y = T \cos \theta = mg = 0 ....(ii)
From equation (ii),
T=mgcosθT = \frac{mg}{\cos \theta}
Eliminating TT from equation (i) we get
Fe=mgtanθF_e = mg \, \tan \theta
or kq2r2=mgtanθ,\frac{kq^2}{r^2} = mg \, \tan \theta , where k=14πε0=9×109k = \frac{1}{4 \pi \varepsilon_0} = 9 \times 10^9
14πε0q2(2lsinθ)2=mgtanθ\therefore \:\:\: \frac{1}{4 \pi \varepsilon_0} \frac{q^2}{(2 l \, \sin \theta)^2} = mg \, \tan \theta (r=2lsinθ)(\because \:\: r = 2l \sin \theta)
or q=16πε0l2mgtanθsin2θq= \sqrt{16 \pi \varepsilon_0 l^2 mg \, \tan\, \theta \, \sin^2 \, \theta}
Substituting the values of l,θl, \theta and mm we have
q=4×4πε0(20×102)2(1.8×103)(10)×tan45sin245q = \sqrt{4 \times4\pi \varepsilon_0 \, (20 \times 10^{-2} )^2 (1.8 \times 10^{-3})(10) \times \tan \, 45^\circ \, \sin^2 \, 45^\circ}
q=4×107Cq = 4 \times 10^{-7} \, C