Solveeit Logo

Question

Question: Two persons each make a single throw with a die. The probability they get equal value is\(p _ { 1 }\...

Two persons each make a single throw with a die. The probability they get equal value isp1p _ { 1 }. Four persons each make a single throw and probability of three being equal is p2p _ { 2 } , then

A

p1=p2p _ { 1 } = p _ { 2 }

B

p1<p2p _ { 1 } < p _ { 2 }

C

p1>p2p _ { 1 } > p _ { 2 }

D

None of these

Answer

p1>p2p _ { 1 } > p _ { 2 }

Explanation

Solution

p1=636=16p _ { 1 } = \frac { 6 } { 36 } = \frac { 1 } { 6 }

To find p2p _ { 2 } the total number of ways =64= 6 ^ { 4 } and since two numbers out of 6 can be selected in 6C2{ } ^ { 6 } C _ { 2 } ways i.e. 15 ways and corresponding to each of these ways, there are 8 ways e.g.,

Thus favourable ways =15×8=120= 15 \times 8 = 120

Hence p2=12064=554p _ { 2 } = \frac { 120 } { 6 ^ { 4 } } = \frac { 5 } { 54 }. Hence p1>p2p _ { 1 } > p _ { 2 }