Solveeit Logo

Question

Question: Two persons A and B throw a die alternatively. Person who first throws 6 is the winner. If A starts ...

Two persons A and B throw a die alternatively. Person who first throws 6 is the winner. If A starts throwing. Then the probability of A’s winning is

A

5/11

B

6/11

C

2/11

D

9/11

Answer

6/11

Explanation

Solution

Let Pk be the probability of A's winning in the Kth throw.

P(1) = P1 + P3 + P5 + ......∞

= 16+(56)216+(56)416+\frac { 1 } { 6 } + \left( \frac { 5 } { 6 } \right) ^ { 2 } \frac { 1 } { 6 } + \left( \frac { 5 } { 6 } \right) ^ { 4 } \cdot \frac { 1 } { 6 } + \ldots \ldots \ldots \ldots

= 1612536=611\frac { \frac { 1 } { 6 } } { 1 - \frac { 25 } { 36 } } = \frac { 6 } { 11 }