Solveeit Logo

Question

Question: Two persons A and B throw a die alternately till one of them get a “six” and wins the game. The pro...

Two persons A and B throw a die alternately till one of them

get a “six” and wins the game. The probability of winning of

B is-

A

611\frac { 6 } { 11 }

B

511\frac { 5 } { 11 }

C

311\frac { 3 } { 11 }

D

None of these

Answer

511\frac { 5 } { 11 }

Explanation

Solution

Let E = the event that A gets six, P(5) = 16\frac { 1 } { 6 }

F = the event that B gets six, P(F) = 16\frac { 1 } { 6 }

\ P(B wins) = P(E\overline { \mathrm { E } }F or E\overline { \mathrm { E } } E\overline { \mathrm { E } } F or E\overline { \mathrm { E } } E\overline { \mathrm { E } } E\overline { \mathrm { E } } F …….)

(Since B can win the game in 2nd, 4th, 6th …… throw)

= (56)3\left( \frac { 5 } { 6 } \right) ^ { 3 } 16\frac { 1 } { 6 } + (56)5\left( \frac { 5 } { 6 } \right) ^ { 5 } 16\frac { 1 } { 6 } + ………. = 536\frac { 5 } { 36 }

= 536\frac { 5 } { 36 } 112536\frac { 1 } { 1 - \frac { 25 } { 36 } } = 511\frac { 5 } { 11 }