Solveeit Logo

Question

Physics Question on Waves

Two periodic waves of intensities I1I_1 and I2I_2 pass through a region at the same time in the same direction. The sum of the maximum and minimum intensities is

A

(I1I2)2(\sqrt{I_1}-\sqrt{I_2})^2

B

2(I1+I2)2(I_1+I_2)

C

I1+I2I_1+I_2

D

(I1+I2)2(\sqrt{I_1}+\sqrt{I_2})^2

Answer

2(I1+I2)2(I_1+I_2)

Explanation

Solution

Other factors such as ω\omega and vv remaining the
same, I=A2×I = A^2 \times constant KK, or AA
On superposition
Amax=A1+A2A_{max}=A_1+A_2 and Amin=A1A2A_{min}=A_{1}-A_{2}
Amax2=A22+2A1A2\therefore \, \, \, \, A^2_{max}=A^2_2+2A_1A_2
ImaxK=I1K+I2K+2I1I2K\Rightarrow \frac{I_{max}}{K}=\frac{I_1}{K}+\frac{I_2}{K}+\frac{2\sqrt{I_1I_2}}{K}
Amin2=A12+A222A1A2A^2_{min}=A^2_1+A^2_ 2 -2A_1A_2
IminK=I1K+I2K2I1I2K\Rightarrow \frac{I_{min}}{K}=\frac{I_1}{K}+\frac{I_2}{K}-\frac{2\sqrt{I_1I_2}}{K}
Imax+Imin=2I1+2I2=2(I1+I2)\therefore \, \, \, \, \, I_{max}+I_{min}=2I_1+2I_2 = 2(I_1+I_2)