Solveeit Logo

Question

Question: Two pendulums differ in lengths by 22 cm. They oscillate at the same place so that one of them makes...

Two pendulums differ in lengths by 22 cm. They oscillate at the same place so that one of them makes 30 oscillations and the other makes 36 oscillations during the same time. The lengths (in cm) of the pendulums are

A

72 and 50

B

60 and 38

C

50 and 28

D

80 and 58

Answer

72 and 50

Explanation

Solution

Time period of pendulum is

T=2π L g T1 T2=L1 L2\mathrm { T } = 2 \pi \sqrt { \frac { \mathrm {~L} } { \mathrm {~g} } } \quad \therefore \frac { \mathrm {~T} _ { 1 } } { \mathrm {~T} _ { 2 } } = \sqrt { \frac { \mathrm { L } _ { 1 } } { \mathrm {~L} _ { 2 } } }

Also, where and

L1 L2=N2 N1=3630\therefore \sqrt { \frac { \mathrm { L } _ { 1 } } { \mathrm {~L} _ { 2 } } } = \frac { \mathrm { N } _ { 2 } } { \mathrm {~N} _ { 1 } } = \frac { 36 } { 30 } …… (i)

L1L2=22 cm\mathrm { L } _ { 1 } - \mathrm { L } _ { 2 } = 22 \mathrm {~cm} …… (ii)

Solving the Eqs. (i) and (ii), we get

cm and