Solveeit Logo

Question

Physics Question on simple harmonic motion

Two particles PP and QQ describe S.H.M. of same amplitude a, same frequency ff along the same straight line. The maximum distance between the two particles is a2a \sqrt{2} The initial phase difference between the particle is

A

zero

B

π/2\pi /2

C

π/6\pi /6

D

π/3\pi /3

Answer

π/2\pi /2

Explanation

Solution

x1x=2asin(ω+ϕ1+ϕ22)cos(ϕ1ϕ22)\left|x_{1}-x\right|=2 a \sin \left(\omega+\frac{\phi_{1}+\phi_{2}}{2}\right) \cos \left(\frac{\phi_{1}-\phi_{2}}{2}\right)
To maximize
x1x2:sin(ωt+ϕ1+ϕ22)=1\left|x_{1}-x_{2}\right|: \sin \left(\omega t+\frac{\phi_{1}+\phi_{2}}{2}\right)=1
a2=2a×1×cos(ϕ1ϕ22)\Rightarrow a \sqrt{2}=2 a \times 1 \times \cos \left(\frac{\phi_{1}-\phi_{2}}{2}\right)
12=cos(ϕ1ϕ22)\Rightarrow \frac{1}{\sqrt{2}}=\cos \left(\frac{\phi_{1}-\phi_{2}}{2}\right)
π4=ϕ1ϕ22\Rightarrow \frac{\pi}{4}=\frac{\phi_{1}-\phi_{2}}{2}
ϕ1ϕ2=π2\Rightarrow \phi_{1}-\phi_{2}=\frac{\pi}{2}