Solveeit Logo

Question

Question: Two particles of masses m<sub>1</sub>and m<sub>2</sub> in projectile motion have velocities \(\overr...

Two particles of masses m1and m2 in projectile motion have velocities v\overrightarrow{v}1, and v\overrightarrow{v}2respectively at time t = 0. They strike at time t0and their velocities become v\overrightarrow{v}'1 and v\overrightarrow{v}'2at time 2t0while still moving in air. The value of

(m1v1+m2v2)(m1v1+m2v2)\left| \left( m_{1}\overrightarrow{v}'_{1} + m_{2}\overrightarrow{v}'_{2} \right) - \left( m_{1}{\overrightarrow{v}}_{1} + m_{2}{\overrightarrow{v}}_{2} \right) \right| is

A

Zero

B

(m1+m2)gt0

C

2(m1 + m2)g t0

D

12\frac{1}{2} (m1 + m2)g t0

Answer

2(m1 + m2)g t0

Explanation

Solution

(m1v1+m2v2)(m1v1+m2v2)\left| \left( m_{1}\overrightarrow{v}'_{1} + m_{2}\overrightarrow{v}'_{2} \right) - \left( m_{1}{\overrightarrow{v}}_{1} + m_{2}{\overrightarrow{v}}_{2} \right) \right|

= change in momentum

= Fdt=2(m1+m2)gt0\int_{}^{}{Fdt = 2\left( m_{1} + m_{2} \right)gt_{0}}