Solveeit Logo

Question

Physics Question on work, energy and power

Two particles of masses m1_1, m2_2 move with initial velocities u1_1 and u2_2. On collision, one of the particles get excited to higher level, after absorbing energy ε\varepsilon. If final velocities of particles be v1_1 and v2_2 then we must have

A

12m1u12+12m2u22ε=12m1v12+12m2v22\frac{1}{2}m_1u_1^2+\frac{1}{2}m_2u_2^2 -\varepsilon =\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2

B

12m12u12+12m22u22+ε=12m12v12+12m22v22\frac{1}{2}m_1^2u_1^2+\frac{1}{2}m_2^2u_2^2 + \varepsilon =\frac{1}{2}m_1^2v_1^2+\frac{1}{2}m_2^2v_2^2

C

m!2u1+m22u2ε=m12v1+m22v2m_!^2u_1+m_2^2u_2-\varepsilon =m_1^2 v_1 +m_2^2v_2

D

12m1u12+12m2u22=12m1v12+12m2v22ε\frac{1}{2}m_1u_1^2+\frac{1}{2}m_2u_2^2 =\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2 -\varepsilon

Answer

12m1u12+12m2u22ε=12m1v12+12m2v22\frac{1}{2}m_1u_1^2+\frac{1}{2}m_2u_2^2 -\varepsilon =\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2

Explanation

Solution

Total initial energy of two particles
=12m1u12+12m2u22=\frac{1}{2}m_1u_1^2+\frac{1}{2}m_2u_2^2
Total final energy of two particles
=12m2v22+12m1v12+ε=\frac{1}{2}m_2v_2^2+\frac{1}{2}m_1v_1^2+ \varepsilon
Using energy conservation principle,
12m1u12+12m2u22=12m1v12+12m2v22+ε\frac{1}{2}m_1u_1^2+\frac{1}{2}m_2u_2^2 =\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2 +\varepsilon
\therefore \, \, \, 12m1u12+12m2u22ε=12m1v12+12m2v22\frac{1}{2}m_1u_1^2+\frac{1}{2}m_2u_2^2 -\varepsilon =\frac{1}{2}m_1v_1^2+\frac{1}{2}m_2v_2^2