Solveeit Logo

Question

Question: Two particles of equal mass m go round a circle of radius R under the action of their mutual gravita...

Two particles of equal mass m go round a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is –

A

V=

B

V =

C

V = 12GmR\frac { 1 } { 2 } \sqrt { \frac { \mathrm { Gm } } { \mathrm { R } } }

D

V = 4GmR\sqrt { \frac { 4 \mathrm { Gm } } { \mathrm { R } } }

Answer

V = 12GmR\frac { 1 } { 2 } \sqrt { \frac { \mathrm { Gm } } { \mathrm { R } } }

Explanation

Solution

the gravitational force provide the necessary centripetal force for circular motion. so

fg = fe Ž Gm2(2R)2\frac { \mathrm { Gm } ^ { 2 } } { ( 2 \mathrm { R } ) ^ { 2 } } = 12(GmR)\frac { 1 } { 2 } \sqrt { \left( \frac { \mathrm { Gm } } { \mathrm { R } } \right) }