Solveeit Logo

Question

Question: Two particles of equal mass have velocities \({\overrightarrow{v}}_{1} = 2\widehat{i}ms^{- 1}\) and ...

Two particles of equal mass have velocities v1=2i^ms1{\overrightarrow{v}}_{1} = 2\widehat{i}ms^{- 1} and v2=2j^ms1{\overrightarrow{v}}_{2} = 2\widehat{j}ms^{- 1} First particle has an acceleration a1=(3i^+3j^)ms2{\overrightarrow{a}}_{1} = \left( 3\widehat{i} + 3\widehat{j} \right)ms^{- 2} while the acceleration of the other particle is zero. The centre of mass of the two particles moves in a path of

A

Straight line

B

Parabola

C

Circle

D

Ellipse

Answer

Straight line

Explanation

Solution

Here, v1=2i^ms1,v2=2j^ms1.{\overset{\rightarrow}{v}}_{1} = 2\widehat{i}ms^{- 1},{\overset{\rightarrow}{v}}_{2} = 2\widehat{j}ms^{- 1}.

a1=(3i^+3j^)ms2,a2=0ms2{\overset{\rightarrow}{a}}_{1} = (3\widehat{i} + 3\widehat{j})ms^{- 2},{\overset{\rightarrow}{a}}_{2} = 0ms^{- 2}

}{(\because m_{1} = m_{2}) = (\widehat{i} + \widehat{j})ms^{- 1}}$$ Similarly, $${\overset{\rightarrow}{a}}_{CM} = \frac{{\overset{\rightarrow}{a}}_{1} + {\overset{\rightarrow}{a}}_{2}}{2} = \frac{3\widehat{i} + 3\widehat{j} + 0}{2} = \frac{3}{2}(\widehat{i} + \widehat{j})ms^{- 2}$$ Since,${\overset{\rightarrow}{v}}_{CM}$is parallel to ${\overset{\rightarrow}{a}}_{CM}$The path will be a straight line