Question
Question: Two particles of equal mass have velocities \({\overrightarrow{v}}_{1} = 2\widehat{i}ms^{- 1}\) and ...
Two particles of equal mass have velocities v1=2ims−1 and v2=2jms−1 First particle has an acceleration a1=(3i+3j)ms−2 while the acceleration of the other particle is zero. The centre of mass of the two particles moves in a path of
A
Straight line
B
Parabola
C
Circle
D
Ellipse
Answer
Straight line
Explanation
Solution
Here, v→1=2ims−1,v→2=2jms−1.
a→1=(3i+3j)ms−2,a→2=0ms−2
}{(\because m_{1} = m_{2}) = (\widehat{i} + \widehat{j})ms^{- 1}}$$ Similarly, $${\overset{\rightarrow}{a}}_{CM} = \frac{{\overset{\rightarrow}{a}}_{1} + {\overset{\rightarrow}{a}}_{2}}{2} = \frac{3\widehat{i} + 3\widehat{j} + 0}{2} = \frac{3}{2}(\widehat{i} + \widehat{j})ms^{- 2}$$ Since,${\overset{\rightarrow}{v}}_{CM}$is parallel to ${\overset{\rightarrow}{a}}_{CM}$The path will be a straight line