Solveeit Logo

Question

Question: Two particles of equal mass go round a circle of radius R under the action of their mutual gravitati...

Two particles of equal mass go round a circle of radius R under the action of their mutual gravitational attraction. The speed of each particle is

A

v=12R1Gmv = \frac { 1 } { 2 R } \sqrt { \frac { 1 } { G m } }

B

v=Gm2Rv = \sqrt { \frac { G m } { 2 R } }

C

v=12GmRv = \frac { 1 } { 2 } \sqrt { \frac { G m } { R } }

D

v=4GmRv = \sqrt { \frac { 4 G m } { R } }

Answer

v=12GmRv = \frac { 1 } { 2 } \sqrt { \frac { G m } { R } }

Explanation

Solution

Both the particles moves diametrically opposite position along the circular path of radius RR and the gravitational force provides required centripetal force

mv2R=Gmm(2R)2\frac { m v ^ { 2 } } { R } = \frac { G m m } { ( 2 R ) ^ { 2 } } \Rightarrow v=12GmRv = \frac { 1 } { 2 } \sqrt { \frac { G m } { R } }