Solveeit Logo

Question

Physics Question on Magnetic Force

Two particles of equal charges after being accelerated through the same potential difference enter a uniform transverse magnetic field and describe circular path of radii R1{{R}_{1}} and R2{{R}_{2}} respectively. Then the ratio of their masses (M1/M2)({{M}_{1}}/{{M}_{2}}) is

A

R1R2\frac{{{R}_{1}}}{{{R}_{2}}}

B

(R1R2)2{{\left( \frac{{{R}_{1}}}{{{R}_{2}}} \right)}^{2}}

C

R2R1\frac{{{R}_{2}}}{{{R}_{1}}}

D

(R2R1)2{{\left( \frac{{{R}_{2}}}{{{R}_{1}}} \right)}^{2}}

Answer

(R1R2)2{{\left( \frac{{{R}_{1}}}{{{R}_{2}}} \right)}^{2}}

Explanation

Solution

Radius of circular path R=mvqBR=\frac{mv}{qB} but mv=2mqVmv=\sqrt{2mqV} \therefore R=2mqVqBR=\frac{\sqrt{2mqV}}{qB} Or RmR\propto \sqrt{m} Or R12R22=M1M2\frac{R_{1}^{2}}{R_{2}^{2}}=\frac{{{M}_{1}}}{{{M}_{2}}} Or M1M2=R12R22=(R1R2)2\frac{{{M}_{1}}}{{{M}_{2}}}=\frac{R_{1}^{2}}{R_{2}^{2}}={{\left( \frac{{{R}_{1}}}{{{R}_{2}}} \right)}^{2}}