Solveeit Logo

Question

Physics Question on Vector basics

Two particles having position vectors r1=(3i^+5j^)m\vec{ r _{1}}=(3 \hat{ i }+5 \hat{ j }) m and r2=(5i^3j^)m\vec{ r _{2}}=(-5 \hat{ i }-3 \hat{ j }) m are moving with velocities v1=(4i^+3j^)ms1\vec{ v _{1}}=(4 \hat{ i }+3 \hat{ j }) ms ^{-1} and v2=(ai^+7j^)ms1\vec{ v }_{2}=(a \hat{ i }+7 \hat{ j }) ms ^{-1}. If they collide after 2s2\, s, the value of aa is

A

2

B

4

C

6

D

8

Answer

8

Explanation

Solution

The correct answer is D:8
AB=r=r1r2A B=\vec{r}=\vec{r_{1}}-\vec{r_{2}}
=(3i^+5j^)(5i^3j^)=(3 \hat{i}+5 \hat{j})-(-5 \hat{i}-3 \hat{j})
=(8i^+8j^)m=(8 \hat{i}+8 \hat{j}) m
v=v2v1\vec{v}=\vec{v_{2}}-\vec{v_{1}}
=(ai^+7j^)(4i^+3j^)=(a \hat{i}+7 \hat{j})-(4 \hat{i}+3 \hat{j})
=(a4)i^+4j^=(a-4) \hat{i}+4 \hat{j}
v=rt\vec{v}=\frac{\vec{r}}{t}
(a4)i+4j=8i^+8j^2(a-4) \vec{i}+\vec{4 j}=\frac{8 \hat{i}+8 \hat{j}}{2}
a=8a=8