Solveeit Logo

Question

Question: Two particles executes S.H.M. of same amplitude and frequency along the same straight line. They pas...

Two particles executes S.H.M. of same amplitude and frequency along the same straight line. They pass one another when going in opposite directions. Each time their displacement is half of their amplitude. The phase difference between them is

A

300

B

600

C

900

D

1200

Answer

1200

Explanation

Solution

Let two simple harmonic motions are y=asinωty = a\sin\omega t and y=asin(ωt+φ)y = a\sin(\omega t + \varphi)

In the first case a2=asinωt\frac{a}{2} = a\sin\omega tsinωt=1/2\sin\omega t = 1/2

cosωt=32\cos\omega t = \frac{\sqrt{3}}{2}

In the second case a2=asin(ωt+φ)\frac{a}{2} = a\sin(\omega t + \varphi)

12=[sinωt.cosφ+cosωtsinφ]\frac{1}{2} = \lbrack\sin\omega t.\cos\varphi + \cos\omega t\sin\varphi\rbrack

12=[12cosφ+32sinφ]\frac{1}{2} = \left\lbrack \frac{1}{2}\cos\varphi + \frac{\sqrt{3}}{2}\sin\varphi \right\rbrack

1cosφ=3sinφ1 - \cos\varphi = \sqrt{3}\sin\varphi(1cosφ)2=3sin2φ(1 - \cos\varphi)^{2} = 3\sin^{2}\varphi

(1cosφ)2=3(1cos2φ)(1 - \cos\varphi)^{2} = 3(1 - \cos^{2}\varphi) By solving we get cosφ=+1\cos\varphi = + 1 or cosφ=1/2\cos\varphi = - 1/2

i.e. φ=0\varphi = 0 or φ=120o\varphi = 120^{o}