Solveeit Logo

Question

Question: Two particles are in SHM with same angular frequency and amplitudes A and 2A respectively along same...

Two particles are in SHM with same angular frequency and amplitudes A and 2A respectively along same straight line with same mean position. They cross each other at position distance from mean position in opposite direction. The phase difference between them is

A

(14)\left( \frac { 1 } { 4 } \right)

B

π6\frac { \pi } { 6 } – sin–1(14)\left( \frac { 1 } { 4 } \right)

C

5π6\frac { 5 \pi } { 6 } – cos–1 (14)\left( \frac { 1 } { 4 } \right)

D

π6\frac { \pi } { 6 } – cos–1 (14)\left( \frac { 1 } { 4 } \right)

Answer

(14)\left( \frac { 1 } { 4 } \right)

Explanation

Solution

sin f1 = A/2 A\frac { \mathrm { A } / 2 } { \mathrm {~A} } = 12\frac { 1 } { 2 }

f1 = π6\frac { \pi } { 6 }

sin (p – f2) = = 14\frac { 1 } { 4 }

f2 = p – sin–1 (14)\left( \frac { 1 } { 4 } \right)

Phase difference

f2 – f1 = 5π6\frac { 5 \pi } { 6 } – sin–1 (14)\left( \frac { 1 } { 4 } \right)