Solveeit Logo

Question

Physics Question on simple harmonic motion

Two particles are executing SHM in a straight line with same amplitude A and time period T. At time t = 0, one particle is at displacement x1=+Ax_1=+A and the other at x2=A/2x_2=-A/2 and they are approaching towards each other. After what time they cross each other.

A

T3\frac{T}{3}

B

T4\frac{T}{4}

C

5T6\frac{5T}{6}

D

T6\frac{T}{6}

Answer

T3\frac{T}{3}

Explanation

Solution

The displacement equation in S.H.M is given by x=Asinωt(1)x =A \sin \omega t \ldots \ldots (1) One particle is at x=+Ax=+A, equation (1) becomes, A=Asinωt1A = A \sin \omega t _{1} ωt1=sin1(1)=π2\omega t_{1}=\sin ^{-1}(1)=\frac{\pi}{2} 2πTt1=π2\frac{2 \pi}{ T } t _{1}=\frac{\pi}{2} t1=T4sect _{1}=\frac{ T }{4} \sec Second particle at x=A2x=-\frac{A}{2} A2=Asinωt2-\frac{ A }{2}= A \sin \omega t _{2} wt2=sin1(0.5)=π6wt _{2}=\sin ^{-1}(-0.5)=-\frac{\pi}{6} 2πTt2=π6\frac{2 \pi}{ T } t _{2}=-\frac{\pi}{6} t2=T12sect _{2}=-\frac{ T }{12} \sec They approach towards each other, the at time when they cross each other, t=t1t2t = t _{1}- t _{2} t=T4(T12)t =\frac{ T }{4}-\left(-\frac{ T }{12}\right) t=T3sect =\frac{ T }{3} \sec