Solveeit Logo

Question

Question: Two particles A and B start moving due to their mutual interaction only. If at any time 't', ![](htt...

Two particles A and B start moving due to their mutual interaction only. If at any time 't', and aB\overrightarrow { \mathrm { a } } _ { \mathrm { B } } are their respective accelerations, and vB\overrightarrow { \mathrm { v } } _ { \mathrm { B } } are their respective velocities and upto that time WA and WB are the work done on A and B respectively by the mutual force, mA and mB are their masses respectively, then which of the following is always correct -

A

B

mAvA+mBvB=0\mathrm { m } _ { \mathrm { A } } \overrightarrow { \mathrm { v } } _ { \mathrm { A } } + \mathrm { m } _ { \mathrm { B } } \overrightarrow { \mathrm { v } } _ { \mathrm { B } } = 0

C

WA + WB = 0

D

Answer

mAvA+mBvB=0\mathrm { m } _ { \mathrm { A } } \overrightarrow { \mathrm { v } } _ { \mathrm { A } } + \mathrm { m } _ { \mathrm { B } } \overrightarrow { \mathrm { v } } _ { \mathrm { B } } = 0

Explanation

Solution

Since Fext=0\sum \overrightarrow { \mathrm { F } } _ { \mathrm { ext } } = \overrightarrow { 0 }

\f0 Moment of system will remain conserved, equal to zero.