Solveeit Logo

Question

Physics Question on work, energy and power

Two particles AA and BB of equal mass MM are moving with the same speed vv as shown in the figure. They collide completely inelastically and move as a single particle CC. The angle θ\theta that the path of CC makes with the XaxisX-axis is given by :

A

tanθ=3+212\tan\theta = \frac{\sqrt{3} + \sqrt{2}}{1-\sqrt{2}}

B

tanθ=3212\tan\theta = \frac{\sqrt{3} - \sqrt{2}}{1-\sqrt{2}}

C

tanθ=122(1+3)\tan\theta = \frac{ 1 - \sqrt{2}}{\sqrt{2} (1 + \sqrt{3})}

D

tanθ=131+2\tan\theta = \frac{ 1 - \sqrt{3}}{1 + \sqrt{2}}

Answer

tanθ=3+212\tan\theta = \frac{\sqrt{3} + \sqrt{2}}{1-\sqrt{2}}

Explanation

Solution

2mvsinθ=mv2+mv322\, mv'\, sin \,\theta=\frac{mv}{\sqrt{2}}+\frac{mv\sqrt{3}}{2}
3mvcosθ=mv2mv23 \,mv' \,cos\, \theta=\frac{mv}{2}-\frac{mv}{\sqrt{2}}
sinθ=12+321212sin\, \theta=\frac{\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}}{\frac{1}{2}-\frac{1}{\sqrt{2}}}
=2+312=\frac{\sqrt{2}+\sqrt{3}}{1-\sqrt{2}}

The Correct Option is (A):\text{The Correct Option is (A):} tanθ=3+212\tan\theta = \frac{\sqrt{3} + \sqrt{2}}{1-\sqrt{2}}