Solveeit Logo

Question

Physics Question on Elastic and inelastic collisions

Two particles A and B, move with constant velocities v1\vec{v_1} and v2\vec{v_2}. At the initial moment their position vectors are r1\vec{r_1}, and r2\vec{r_2} respectively. The condition for particles A and B for their collision is

A

r1×v1=r2×v2\vec{r_1} \times \vec{v_1}=\vec{r_2} \times \vec{v_2}

B

r1r2=v1×v2\vec{r_1} -\vec{r_2}=\vec{v_1} \times \vec{v_2}

C

r1r2r1r2=v2v1v2v1\frac{\vec{r_1}-\vec{r_2}}{|\vec{r_1}-\vec{r_2}|}=\frac{\vec{v_2}-\vec{v_1}}{|\vec{v_2}-\vec{v_1}|}

D

r1v1=r2v2\vec{r_1} \cdot \vec{v_1}=\vec{r_2} \cdot \vec{v_2}

Answer

r1r2r1r2=v2v1v2v1\frac{\vec{r_1}-\vec{r_2}}{|\vec{r_1}-\vec{r_2}|}=\frac{\vec{v_2}-\vec{v_1}}{|\vec{v_2}-\vec{v_1}|}

Explanation

Solution

The correct answer is C:r1r2r1r2=(v2v1)v2v1\frac{\vec{r_1}-\vec{r_2}}{|\vec{r_1}-\vec{r_2}|}=\frac{(\vec{v_2}-\vec{v_1})}{|\vec{v_2}-\vec{v_1}|}
Let the particles A and B collide at time t. For their collision, the position vectors of both particles should be same at time t, i.e.
r1+v1t=r2+v2t\vec{r_1} + \vec{v_1}t=\vec{r_2} + \vec{v_2}t
r1r2=v2tv1t\vec{r_1} - \vec{r_2}=\vec{v_2}t - \vec{v_1}t
=(v2v1)t...(i)=(\vec{v_2}-\vec{v_1})t ... (i)
Also, r1r2=v1v1t|\vec{r_1}-\vec{r_2}|=|\vec{v_1}-\vec{v_1}|t or t=r1r2v2v1t=\frac{|\vec{r_1}-\vec{r_2}|}{|\vec{v_2}-\vec{v_1}|}
Substituting this value of t in eqn. (i), we get
r1r2=(v2v1)r1r2v2v1\vec{r_1}-\vec{r_2}=(\vec{v_2}-\vec{v_1})\frac{|\vec{r_1}-\vec{r_2}|}{|\vec{v_2}-\vec{v_1}|}
or r1r2r1r2=(v2v1)v2v1\frac{\vec{r_1}-\vec{r_2}}{|\vec{r_1}-\vec{r_2}|}=\frac{(\vec{v_2}-\vec{v_1})}{|\vec{v_2}-\vec{v_1}|}