Solveeit Logo

Question

Physics Question on projectile motion

Two particles AA and BB are projected with same speed so that the ratio of their maximum heights reached is 3:13:1 . If the speed of AA is doubled without altering other parameters, the ratio of the horizontal ranges attained by AA and BB is

A

1:11:1

B

2:12:1

C

4:14:1

D

3:23:2

Answer

4:14:1

Explanation

Solution

H=u2sin2θ2gH=\frac{{{u}^{2}}{{\sin }^{2}}\theta }{2g} or H1H2=u2sin2θ1u2sin2θ2\frac{{{H}_{1}}}{{{H}_{2}}}=\frac{{{u}^{2}}{{\sin }^{2}}{{\theta }_{1}}}{{{u}^{2}}{{\sin }^{2}}{{\theta }_{2}}}
Or 31=sin2θ1sin2θ2\frac{3}{1}=\frac{{{\sin }^{2}}{{\theta }_{1}}}{{{\sin }^{2}}{{\theta }_{2}}}
or sinθ1sinθ2=31\frac{\sin {{\theta }_{1}}}{\sin {{\theta }_{2}}}=\frac{\sqrt{3}}{1}
Logically, we can conclude that θ1=60o,θ2=30o{{\theta }_{1}}={{60}^{o}},{{\theta }_{2}}={{30}^{o}}
Again R=u2sin2θgR=\frac{{{u}^{2}}\sin 2\theta }{g}
Or R1R2=4u2sin2θ1u2sin2θ2\frac{{{R}_{1}}}{{{R}_{2}}}=\frac{4{{u}^{2}}\sin 2{{\theta }_{1}}}{{{u}^{2}}\sin 2{{\theta }_{2}}}
Or R1R2=4sin2(60o)sin2(30)=4sin120sin60\frac{{{R}_{1}}}{{{R}_{2}}}=\frac{4\sin 2({{60}^{o}})}{\sin 2(30{}^\circ )}=\frac{4\sin 120{}^\circ }{\sin 60{}^\circ }
Or R1R2=4×3232=4\frac{{{R}_{1}}}{{{R}_{2}}}=\frac{4\times \frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2}}=4