Solveeit Logo

Question

Question: Two particles A and B are moving on two different concentric circles with different velocities v<sub...

Two particles A and B are moving on two different concentric circles with different velocities vAand vBthen angular velocity of B relative to A as observed by A is given by:

A

vBvArBrA\frac{v_{B} - v_{A}}{r_{B} - r_{A}}

B

vArA\frac{v_{A}}{r_{A}}

C

vAvBrArB\frac{v_{A} - v_{B}}{r_{A} - r_{B}}

D

vB+vArB+rA\frac{v_{B} + v_{A}}{r_{B} + r_{A}}

Answer

vBvArBrA\frac{v_{B} - v_{A}}{r_{B} - r_{A}}

Explanation

Solution

Assuming the particles to be the closest, relative velocity

vr=vBvA=vBvAv_{r} = \left| {\overrightarrow{v}}_{B} - {\overrightarrow{v}}_{A} \right| = v_{B} - v_{A}

and relative position vector,

rr=rBrA=rBrAr_{r} = \left| {\overrightarrow{r}}_{B} - {\overrightarrow{r}}_{A} \right| = r_{B} - r_{A}

Using ω = v/r, we get relative angular velocity.

ω = vrrr=vBvArBrA\frac{v_{r}}{r_{r}} = \frac{v_{B} - v_{A}}{r_{B} - r_{A}}