Solveeit Logo

Question

Question: Two particles A and B are moving in a horizontal plane anticlockwise on two different concentric cir...

Two particles A and B are moving in a horizontal plane anticlockwise on two different concentric circles with different constant angular velocities 2ω2\omega and ω\omega respectively. Find the relative velocity (in m/s) of B w.r.t. A after time t=π/ωt = \pi/\omega. They both start at the position as shown in figure. (Take ω\omega = 3 rad/sec, r = 2m)

A

24 m/s

B

12 m/s

C

36 m/s

D

0 m/s

Answer

24 m/s

Explanation

Solution

  1. Initial Conditions:

    • Particle A: Radius RA=rR_A = r, initial position on positive x-axis.
    • Particle B: Radius RB=2rR_B = 2r, initial position on positive x-axis.
    • Angular velocities: ωA=2ω\omega_A = 2\omega (anticlockwise), ωB=ω\omega_B = \omega (anticlockwise).
    • Time t=π/ωt = \pi/\omega.
    • Given values: ω=3\omega = 3 rad/sec, r=2r = 2 m.
  2. Angular Positions at time t=π/ωt = \pi/\omega:

    • For particle A: θA(t)=θA(0)+ωAt=0+(2ω)(π/ω)=2π\theta_A(t) = \theta_A(0) + \omega_A t = 0 + (2\omega)(\pi/\omega) = 2\pi.
    • For particle B: θB(t)=θB(0)+ωBt=0+(ω)(π/ω)=π\theta_B(t) = \theta_B(0) + \omega_B t = 0 + (\omega)(\pi/\omega) = \pi.
  3. Velocities at time t=π/ωt = \pi/\omega: The velocity vector for a particle in anticlockwise circular motion starting from the positive x-axis is given by v=Rω(sinθi^+cosθj^)\vec{v} = R\omega(-\sin\theta \hat{i} + \cos\theta \hat{j}).

    • For particle A:
      • θA=2π\theta_A = 2\pi
      • vA=RAωA(sin(2π)i^+cos(2π)j^)=r(2ω)(0i^+1j^)=2rωj^\vec{v}_A = R_A \omega_A (-\sin(2\pi) \hat{i} + \cos(2\pi) \hat{j}) = r(2\omega)(0\hat{i} + 1\hat{j}) = 2r\omega \hat{j}.
    • For particle B:
      • θB=π\theta_B = \pi
      • vB=RBωB(sin(π)i^+cos(π)j^)=(2r)(ω)(0i^1j^)=2rωj^\vec{v}_B = R_B \omega_B (-\sin(\pi) \hat{i} + \cos(\pi) \hat{j}) = (2r)(\omega)(0\hat{i} - 1\hat{j}) = -2r\omega \hat{j}.
  4. Relative Velocity of B with respect to A: vB/A=vBvA\vec{v}_{B/A} = \vec{v}_B - \vec{v}_A vB/A=(2rωj^)(2rωj^)=4rωj^\vec{v}_{B/A} = (-2r\omega \hat{j}) - (2r\omega \hat{j}) = -4r\omega \hat{j}.

  5. Magnitude of Relative Velocity: Substitute the given values: r=2r = 2 m, ω=3\omega = 3 rad/sec. vB/A=4×(2 m)×(3 rad/sec)j^=24j^ m/s=24 m/s|\vec{v}_{B/A}| = |-4 \times (2 \text{ m}) \times (3 \text{ rad/sec}) \hat{j}| = |-24 \hat{j}| \text{ m/s} = 24 \text{ m/s}.