Solveeit Logo

Question

Physics Question on Electrostatics

Two parallel plate capacitors, each of capacitance 40 µF, are connected in series. The space between the plates of one capacitor is filled with a material of dielectric constant K = 4. The equivalent capacitance of the system would be:

A

30 µF

B

31 µF

C

32 µF

D

33 µF

Answer

32 µF

Explanation

Solution

Solution: First, calculate the capacitance of the capacitor with the dielectric inserted. The new capacitance C1 with dielectric constant K=4 is:\textbf{Solution:} \text{ First, calculate the capacitance of the capacitor with the dielectric inserted. The new capacitance } C_1 \text{ with dielectric constant } K = 4 \text{ is:}
C1=K×C=4×40μF=160μFC_1 = K \times C = 4 \times 40 \, \mu\text{F} = 160 \, \mu\text{F}
The second capacitor C2 remains unchanged at 40μF.\text{The second capacitor } C_2 \text{ remains unchanged at } 40 \, \mu\text{F}.
The equivalent capacitance for capacitors in series is given by:\text{The equivalent capacitance for capacitors in series is given by:}
1Ceq=1C1+1C2\frac{1}{C_{\text{eq}}} = \frac{1}{C_1} + \frac{1}{C_2}
Substituting values:\text{Substituting values:}
1Ceq=1160μF+140μF=1160+140=1+4160=5160\frac{1}{C_{\text{eq}}} = \frac{1}{160 \, \mu\text{F}} + \frac{1}{40 \, \mu\text{F}} = \frac{1}{160} + \frac{1}{40} = \frac{1 + 4}{160} = \frac{5}{160}
Ceq=1605=32μFC_{\text{eq}} = \frac{160}{5} = 32 \, \mu\text{F}